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Simulation Results — Dynamics of Spreading

» Develop a mor e fundamental under standing of fluid transport on metal surfaces
* joining metals (brazing, soldering)

 growth of metal interfaces (thin films, self assembly)
* Pb on Cu(111) and Cu(100) displaysrich phase behavior top t = 0.50 ns
* Pb on Cu ispartially wetting (gy, ~950° - 20°) [1,2] view
e cover age dependent surface phasesform on Cu (111) and (100) [2,3]
* Dy, high for overlayer phases ... low for surface alloy phases|[2] Pb
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* experimentally observed foot” diffuses out from islands/drops with R ~t#[2,3] T=700K t=0.25ns t =0.50 ns t=0.75ns molecular ‘foot’ ... advances diffusively

[1] —Bailey and Watkins; Proc. Phys. Soc. 63(1949)350
[2] —J. Moon, et al; Surface Science 488(2001)73-82 side
[3] — G. Prévot, et al; Phys Rev B 61(2000)10393
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» Multi-body potential (capturesthe nature of bonding in metals) Simulation Results — | nterfacial Structure

* Pb and Cu potentialsfrom literature[1,2]; Pb/Cu cross-term recently published [3]
e (T )PP =600 K {experiment}; (T,)" =618 K {model}

Conclusions/ Future

* On both Cu surfaces, kinetics of drop spreading are controlled by ‘foot’

o (T, ) =1353 K {experiment}; (T,,)CU =1278 K {model} Kinetics
75 I I I I
* New potential accurately predicts binary properties (phase diagram, heat of mixing) - — Ca(111)- bare
-+—- Cu (100) - bare .
[1] —H.S. Lim, et al; Surf. Sci. 269/270(1992)1109 v Cu(111) - prewet
[2] — SM. Foiles, et al; Phys. Rev. B 33(1986)7983
[3] —J.J. Hoyt; et al: Modelling Simul. Mater. Sci. Eng. 11(2003)1 BLHEH L A surface alloyi ti
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(Ly,)%"® =55 nm  Deter mine specific mechanisms by which ‘foot’” advances on each substrate

* NVT ensemble (periodic boundary conditionsinxandy ... zis” tointerface) - Excellent qualitative agreement with experiment (slow on Cu(100) where

alloyed structure exists, fast on Cu(111) where overlayer structureexists
* (T < {Tg,=T700K} < (T)C ’ — ’ )

» Can experiment confirm/refute structure of film observed in simulations?




